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t Physics Department, Fudan University, Shanghai 200431, People's Repbulic of China 
$Theoretical Physics Division, Nankai Institute of Mathematics, Tianjin 300071, People's 
Republic o f  China 
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Abstract. The soliton mass in the quantized sine-Gordon model over the whole range of 
the coupling constant (9' from 0 to 8r) is evaluated by means of the Gaussian effective 
potential method. The analytical expression with numerical results is presented. We find 
that the coupling constant g can only take discrete vdues. A new kind of soliton linking 
g o  = 0 to g+ = ?r emerges at a set of special coupling constants g. 

1. Introduction 

The sine-Gordon (s -G)  model in (1  + 1) dimensions is an ideal theoretical laboratory 
for nonlinear phenomena in physics, either in the classical or the quantum version. 
For a n  exceiieni review, see e.g. [ij. Recentiy, ihe method of Gaussian eiieciive potentiai 
(GEP) in quantum field theory has been applied io the s - ~  model with impressive results 
[Z-51. While in that literature the quantization of the s - c  model is carried out in uniform 
configuration, we will concentrate in this paper on the quantization of the s-G model 
in a non-uniform background, i.e. the quantization around a soliton. In other words, 
we will discuss the quantum correction of a soliton mass by the GEP method and 
UJ1rLp'"lC "U, LCbUlL W l l l l  Lllal U1 LUJ *U" L,,. 

The organization of this paper is as follows. After a brief description of the GEP 

method in section 2, we shall improve it for the case of uniform background in section 
3 to derive the mass of the quantized soliton. Some analytic and numerical results will 
be given in section 4. Section 5 contains a brief summary and discussion. The zero 
mode and related problems are discussed in an appendix. 

~~~~ -..~~.. :.t .L.. . 1 _ r r ,  ._A r-7 

2. The Gaussian effective potential method I2-5,71 

We begin with the Lagrangian density of the S-G model 

and write down the Hamiltonian of this system as 

(2.2) 

619 0305-4470/92/0SO679+ 11604.50 0 1992 IOP Publishing Ltd 
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(II, = aLf/a$ = 6). This GEP method amounts to introducing a Gaussian wavefunc- 
tional (GWF) with an external source J (x) :  

I*),=N/exp I: - I dxpx4x--  2 h  l l  d x d y ( ~ , - @ ~ ) ~ ~ ( 4 ~ - @ ~ ) + ~ 1  drJx4,] (2.3) 

where +x = &(XI, QX =('€'14xl'€'),=o. The normalization condition ('U/'€'),=,,= 1 leads to 

(2.4) 

where f;,! = f - ' ( x  -y)  is the inverse of the quantum fluctuation correlation function 
f, = f (x-y)  such that 

I ('€'IV),=exp{( dxJ,@,+$h dxdyJ,f;,!J, I 

with their Fourier transformations ( h  = 1): 

(2.7) 

Evaluating the total energy of the E-G system in the state l'€'),=o and using the trick 
explained in appendix A of [4], one obtains 

E[@,9', f]=(?lHl'€'),=o= d x z  I 
m 

where 

A 

The variation of E with respect to f ,  

SE _- - 0  
Sf, 

yields 

fp=m 
with 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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Moreover, 6 E / 6 P x  = O  leads to Px =O.  If considering the uniform configuration 

(2.13) 

@ = constant, ax@ = 0, one may define a GEP: 

Verd@) = min e ( @ ,  0') = E ( @ ,  p2(@))  
n' 

via 

(2.14) 

Hence 

(2.15) 
J;i 

p2(@) = m'z,, cos - @. 
m 

m;=!%l 
o = o  

(2.16) 

(2.17) 

we find 

m&= m2z+/o=o (2.18) 

2g2+8?r z, =- 
8n-g' 

The mass parameter ~'(0) is related to m:: 
8*, (Sn-#' )  p2(@) = ",(cos g@)  

while the effective potential reads 

(2.19) 

(2 .20)  

(2.21) 

(2 .22)  

Clearly, when g2 < 871, @ = Ocorresponds to the stable phase, while the stability criterion 
for the s - ~  model at the quantum level implies that 

(2.23) 

So one rediscovers the famous Coleman critical value of g2, ga,=8n [SI 

3. The expression of the soliton mass in the GEP method 

Now we are facing a new problem. Can we still use the CEP method described in 
section 2 to calculate the mass of the quantized soliton in the 8-c model? Notice that 
in the renormalization scheme used to derive the effective potential (2 .22) ,  we have 
distinguished @ # 0 from @ = 0. If @ takes a uniform configuration, it is trivial. But it 
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would be more meaningful for @ to carry an x-dependence. Then the mass parameter 
R2 in equation (2.12) is endowed with an x-dependence, which in turn will bring 
x-dependence to& in (2.1 1). Is it reasonable or not? Actually, if there is a non-uniform 
background, the quantum fluctuation correlation function f, should not have the 
property of translational invariance. So if we still expand it in terms of equation (2.6), 
the function f ,  should in general carry a dependence on variable (x+y).  Since there 
is a!.uays a fi?x!ior! 8 ( . r - y )  1” front afLy orf;,!, we eventua!!y find 

&(x) = M = J p 2 +  m2z, cos g@(x) (3.1) 

& ( x + y ) = & =  r-----m p2+m2z, ,cosg@ - (3.2) 

(i) The term +IdyS(x-y)a:f;; in the energy density will acquire an extra contri- 

which should be viewed as 

such that the symmetry f ,  =Ax is maintained. Then some remarks are in order: 

bution 

- - J x [ y - J x @ ]  1 1 J p 2  (&= m2Zwg sing@ 
8?r ,U aQ J @  g2’“-1 (3.3) 

Since it turns out to be a total derivative, it has no influence on the equation for @(x). 
Of course, there is also no change in the equation for&. 

(i i)  Once when cos g@(x)<O, the mass parameter p ( x )  becomes imaginary. One 
needs to check all the calculations up to the effective potential Vee(@). Fortunately, 
every formula remains valid irrespective of the sign of p2, (We confine ourselves to 
the real value of p2, see below.) 

(iii) Last, but not least, we need to see whether the fundamental condition forf, 
and f;: remains valid (p’(x+y) = m2Z, cos g@[(x+y)/2]). 

=S(x-2).  

Notice that the well known Fourier transformation 

remains valid even when p(x+yy) is imaginary because 

with Jo and Nu being Bessel and Neumann functions of zero order. Define 

(3.4) 

(3.5) 

(3.7) 
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which could be viewed as a new expression for the S function. 
One may understand equation (3.8) by plotting the product of two functions G 

and K in the integrand. Now p changes with y and in some region the argument of 
G(p(x+y)lx-yl)  and k(p(y+z)ly-zl)  may become imaginary. In this case we can 
still expect equation (3.8) to hold approximately. 

The accuracy of this approximation could he seen alternatively as follows. Denote 
f, =J(p, R ) = J p 2 + p 2 ( R ) ,  then we have 

f ( P . ~ ) = f ( p , ~ ) + ? ( p , ~ ) ~ +  y + z  (x-2)  
2 

where 

Since f ( p ,  R) is a slowly varying function of R, we may substitute the ratio 
f ( p ,  R ) / f ( k ,  R )  by its average with respect to R[=(y+z)/2],  [ f (p ,  R)/f(k, R ) ] ,  
which is then independent of y when performing the integration of y. The ratio 
?( p ,  R ) / j ( p ,  R )  is small in most of the range of p; it could also be viewed as roughly 
independent of R and p and so will be denoted as a constant c. Thus 

C 
dy/(x, y)f-'(y, Z) = S(X- Z ) + - ( X - Z ) ~ ( X - Z )  = S ( X - Z )  (3.9) f 2 

follows immediately. Though equations (3.4) or (3.9) could be proved approximately 
as above, it is still a weak point in our formalism. 

From now on, we will consider @ having a non-uniform configuration and preserve 
the term i(Jx@)2. 

Thus the total energy of our static quantized S-G system reads 

(3.10) 

The mass of a static soliton M is defined as the difference between the energy E 
with @=Os describing a soliton configuration and that with @=O, i.e. ( m n  will he 
simplified to m below): 

(3.11) 
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The soliton equation @s should be found via the variation S E / S @ = O  to be [9] 

d2@ m1 (cos gQ)**/'8"-B*' sin ' g@ = 0 
dx2 g 

(3.12) 

Only in the weak coupling limit g + 0, can we get the well known expression for 
the 3-G soliton 

4 

g 
@'''(x)=-tan-' exp(mx). (3.13) 

Multiplying (3.12) by d@/dx, we easily obtain after integration 

(3.14) 

where the boundary conditions @ = 0, d@/dx = 0 are used. 
The comparison between (3.11) and (3.14) reveals that 

or (g@ = e) 

(3.16) 

The upper bound of integration, eo, is fixed by the boundary condition of the soliton. 
Either Bo = 2rr or Bo = TI will be used (see section 4). 

4. Analytic and numerical results 

According to the expression of the GEP, equation (2.22), one finds from conditions 
dV,,/d@=O and d2Ven/d@*>0 that @ = @  and 257 always correspond to a minimum. 
For the integrand of equation (3.15) not to develop an imaginary part, we take the 
value of coupling constant to be 

N - 1  
g2=-  

 TI 2 n + N  
xrr-gz- 2 n + l  2 n + N S T I  

where n =0, 1,2,. . . , N =  I ,  2, .  . . 
Then one finds further that 

d@ 
(4.2) 

So g@ = TI also becomes a minimum when N = even in contrast to a maximum when 
N =odd. The use of two integer numbers n and N enables us to approximate any 
value of g 2  over the whole region (0 ,8n) .  Some analytical results can be obtained 
from (3.16) as follows. 
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(i) For example, in the case of g’= 47r, corresponding to N = 2, n = 0, we find 

(4.4) 

Actually, in doing the computer analysis, we begin from the equation 

with dx/d0 given by equation (3.14) as a function of 8 = g@. After setting g2 = 47r, 
we let the computer run from xo+ --oo as 0 increases from 0. Then to our surprise, 8 
runs to n when x + m; 0 never runs to 2n. Alternatively, we may set a value 0 = 8, ,  
O <  e,< n, at x =0,  then the computer will run to 0 + 0  at x +  --oo and 0 +  T at x + + m  
A soliton linking 0 = O  and n appears clearly on the screen rather than an expected 
one linking 9 = 0 and In. This kind of situation occurs for every value of g in (4.1 j 
with N = even. 

Certainly, in the classical case, there is no soliton linking 0 = 0 and n. We always 
have a classical soliton linking 0 = 0 and i 7 r  with mass 

So the emergence of the soliton linking 0 = 0 to x may be a false phenomenon stemming 
from the approximate nature of the GEP method. But for comparison with the soliton 
mass at the vicinity value of g with N = odd, we think it may be worth calculating the 
difference formally: 

(4.6) I . ,  .I\ 3m n 1Lll lr  
IM,, - 1V1,1g‘=4n - - u.41 I ~ m .  

271 

(ii) An interesting case is the weak coupling limit g 2 + 0 ,  corresponding to N+m. 
In  this case one may neglect g’ in the exponential and get 

SO 

m 

i 7 r  
(Mc, - MJ?2-o =-. (4.8) 

(iii) Obviously, in the strong coupling limit gz+ 87r, equation (3.15) gives 

(4.9) 

and 

(iv) For generic value of g, we obtain the numerical result of M> from equation 
(3.16) by using a computer. 
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0 2 4 6 

9 

Figure 1. The difference between the classical value of a soliton mass M , , = 8 m / g 2  and 
the quantized soliton mass M , ,  in unit of m, as a function of coupling con~tant  g. The 
lower curve (with full triangles) refers to soliton linking g@=O and g @ = 2 w  while the 
upper one (with open triangles) refers to that linking g@ = 0 and g@ = ii. The middle solid 
line is for I lw,  the ordinate is in logarithmic scale. For more detail, see the text. 

Then two curves on the plot of (M, ,  - M J /  m versus g are obtained. They correspond 
to N =even or odd respectively and tend to the common limit l / s  at g2+8?r (see 
figure 1). Note that if the new kind of soliton does exist at the quantum level, its energy 
is lower than the usual one. 

5. Summary and discussion 

(i) We propose a non-perturbative approach for calculating the soliton mass in 
the quantized s-G model based on the GEP method. The crucial point lies in the 
observation that the effective potential (2 .22)  derived in the 5-G model remains approxi- 
mately valid for non-uniform configuration, @ # constant. 

(ii) A remarkable new feature of the GEP, equation (2 .22) ,  is that it develops a new 
minimum at gcP = 11 when 

N - l  
2-- 87r N = 2 , 4 , .  . . 

- 2 n t N  

so a soliton connecting gcP = 0 and 11 appears in addition to the well known soliton 
connecting gcP = 0 and 211 when 

(5 .2)  
N - l  

g2=- N = 1 , 3 , .  . . 
2 n + N S V  

(iii) The analytical expression for soliton mass, equation (3.16), looks quite elegant 
with Bo= 7r or 211 relevant to case (5.1) or ( 5 . 2 ) .  The labour cost in computer work is 
much less than that in other methods, e.g. the Hartree-Fock (H-F) method in [61. 
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(iv) As a criterion for accuracy, we compare our result (4.7) for g 2 + 0  with that 
of other methods. Indeed, instead of (3.16), we use equation (3.15) and then substitute 
the approximate solution @=@", equation (3.13), into it. Then we get 

which coincides precisely with that derived from the H-F method [6] or  the WKB method 
[lo]. Since equation (5.3) contains a further approximation than that in equation (3.15) 
which has the same accuracy as equation (3.16), so we have more confidence in result 
(4.7) over (5.3). 

(v) Now we try to compare our GEP method with the H-F method in [6,7]. Both 
methods share the common point of view that the quantum correction of the soliton 
mass is due to the difference between the quantum fluctuation under a soliton back- 
ground and that under the uniform vacuum. The difference between these two methods 
lies in the different treatment of mode resolution. 

In the H-F method, one works in the Heisenberg picture and expands the quantum 
fluctuation into modes of fictitious particles with energy square 0: = k2+ m2 in the 
uniform vacuum, but into modes w, in the presence of a soliton. In the classical case, 
w, also has a continous spectrum like wk besides a lower discrete one w, l o = o  = 0 which 
is called the zero mode. However, in the quantum case lim,2_,w,/,=o=30- 
ceases to be zero (g # 0) (see equation (4.5) of [6]). 

It seems to us that a zero mode w,=O should always exist even in the quantum 
case because it reflects the translational invariance of the Lagrangian. So the mode 
resolution into q, (which comprises more and more discrete modes when the coupling 
becomes stronger) [6] does not have too many physical implications. 

On the other hand, in the GEP method, we work in the Schrodinger picture and 
expand the quantum fluctuation f, into a Fourier integral, i.e. in the representation 
of plane wave e"" with continuous p spectrum, irrespective of the absence or presence 
of a soliton. This is not an eigenmode resolution but a mathematical trick from the 
beginning. Even a localized zero mode can be expanded into a Fourier integral, which 
does not need a particle-like explanation. For mode resolution in the GEP method, see 
the appendix. 

(vi) There is subtlety in our formalism. As mentioned before, we take the values 
of g 2 / 8 a  in (5.1) or (5.2) as special rational numbers to avoid the appearance of an 
imaginary part in the calculation in equation (3.16). Notice that, however, the mass 
parameter Cl = ,U turns out to be imaginary when cos g@ < 0 which does occur at the 
central part of a soliton connecting g @  = 0 and 2a. This may imply the instability of 
long-wave quantum fluctuation (see (3.5) and (3.6)) around a soliton to initiate a 
change of ground state from g@ = 0 to 2a or vice versa. Fortunately, this complexity 
causes no harm to the evaluation of the soliton mass which remains real in either the 
(5.1) or (5 .2 )  case. 

(vi:) Because the approximation of the GEP method is not under control, we tend 
to take a conservative attitude. Not only should the 'new' soliton linking g @  = 0 to a 
not be stressed, but also the discrete values of g 2 / 8 a  may only have limited meaning. 
What we can claim with confidence is that for any value of g 2 / 8 a  between 0 and 1, 
the O W  method can provide a mass value of a quantized soliton (linking g @ = O  to 

1 i 3  2 i 3  g 
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27r) approximately, by adjusting two integers n and N. However, there is some recent 
literature emphasizing the discrete coupling constants of the s-G model based on 
rigorous treatment [ t l ,  121. So as a bold conjecture, we might raise the following 
question. Do the discrete values of g 2 / h  discussed in this paper have some relevance 
to the intrinsic symmetry of S-G model? Further investigation is needed. 

I 
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Appendix. Zero mode, the kinetic energy and excitation of a soliton 

Notice first that we have ignored a kinetic energy term $9; in discussing the mass of 
a soliton (see equation (2.8)). If replace 9x=(P/lTbJ') by J@/at, we can write the 
effective action as 

S.,tf@] d t  dx{f(J,@)2-i(d,@)2- Vem(@)}. (A.1) I 
with Vcw(@) given by (2.22). 

The variation SSerr=0 yields the motion equation: 

a2@ a2@ 
a t 2  ax2 

+ VL,(@)=O. 

Hence we see that a moving quantized soliton is boosted from a static one 

(A.2) 

with @,(x) satisfying (A.2) without the first term, i.e. equation (3.12). 

Hamiltonian: 
Let us evaluate the energy of a moving soliton via the following effective 

HCJ4] = d ~ ( i P ? + f ( a , @ ) ~ +  Veff(@)- Verf(0)]. (A.4) J 
Substituting (A.3) into (A.4) and using (3.11),  (3.14) and (3.15), one finds 

as expected. 
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Next, we consider how the effective potential changes when the configuration @(x) 
deviates a little from a static soliton a3(x) :  

Similar to the discussion in [I], we have the eigenvalue problem: 

where d x )  are the orthonormal ‘normal modes’ of fluctuations around @.(x). So the 
time-dependent fluctuation reads 

m 

V(X, t ) = @ ( x ,  O - @ d x ) =  1 C L I ) q ; ( x ) .  (A.8) 
i=0 

Note that i = 0 refers to the zero mode q O ( x )  satisfying 

(A.9) 

It can be seen from performing d/dx on the motion equation of @,(x) that q o ( x )  = 
(d/dx)@,(x) with o o = O  as expected. Finally, the total energy of an excited moving 
quantized soliton should be 

(A.lO) 

We wish to stress once more that: 
(i) There are no zero point energies of vacuum quantum fluctuation, hwj, in 

the second term. They have already been absorbed into the mass of the soliton, M , .  
(ii) The zero mode o,=0 contributes nothing to the second term. The excitation 

energy related to translational invariance has been ascribed to the kinetic energy of 
the soliton in the first term. 
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